
© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m499

A Different Approach to Image Steganography

using 2BRGB Mapping

Ahmed M

Department of Computer Science and

Engineering,

Dr. M.G.R. Educational and Research

Institute,

Maduravoyal, Chennai

Dr. Cyril Raj V

Department of Computer Science and

Engineering,

Dr. M.G.R. Educational and Research

Institute,

Maduravoyal, Chennai

Dr. Geetha S

Department of Computer Science and

Engineering,

Dr. M.G.R. Educational and

Research Institute,

Maduravoyal, Chennai

Abstract— The transmission of confidential information is

crucial in today's world. However, not all forms of transmission

are secure, even if the information is encrypted. One covert

methodology used for secure transmission is called

steganography. This term, having its origins in Greek, means

"hiding writing" and describes the process of hiding a message

inside another. A computer file, message, picture, or video may

be hidden inside another file, message, image, or video in a

computing or electronic setting. However, some steganographic

techniques such as LSB and DCT have disadvantages like

Visual Attack and Histogram Attack that can reveal the

presence of a hidden message. To address this issue, this project

proposes a new approach for retrieving the secret message using

an image, which we call 2-Bit RGBinary Mapping. This

approach uses a specific reference image instead of the source of

the secret text, ensuring the confidentiality of the message. By

using this method, the hidden message can be retrieved securely

without any fear of detection.

Keywords—LSB (Least Significant Bit), DCT (Discrete Cosine

Transformation), 2BRGBM (2 Bit Red Green Blue Binary

Mapping), JPEG (Joint Photographic Experts Group), OSS

(Open Stego Server), IM (Instant Messaging), UUID (Universally

Unique Identifier).

I. INTRODUCTION

Steganography's goal is to hide a data or to conceal

something. It's a method of secret communication that uses

every means possible to cover up interaction. Since no secret

information is being used, this cannot be considered

cryptography. However, this is only one method of

concealing information; there are many more. In contrast to

cryptography, which facilitates privacy via scientific means,

steganography allows for concealment and deception by

practical means. Standard radio and communications

technology vocabulary is sometimes used while discussing

steganography. Some terminologies however are unique to

computer programs and are often mistaken with one another.

In terms of digital steganographic systems, these are the most

important ones: The data that is conveyed in secret is called

the "payload." In contrast to the channel, which often refers

to the sort of input, such a JPEG picture, the carrier is the

signal, stream, or data file that conceals the payload. The

resultant package, stego file, or covert message may be a

signal, stream, or data file containing the encoded payload.

The encoding density is a numeric value between 0 and 1 that

describes the fraction of signal bytes, samples, or pieces that

have been altered to encode the payload.[6]

Suspect files in a collection are those that have a higher

probability of being the actual payload. A candidate is a

potential suspect that has been found by statistical analysis.

II. LITERATURE SURVEY

(E.V. Sidi et al., 2022) Although steganography and

encryption are different, combining the two helps to ensure

that sensitive data remains secure and that concealed

conversations remain hidden. In this context, they have

suggested a mashup of the LSB method, the RSA public-key

cryptosystem, and the Caesar cipher symmetric encryption

algorithm to create a new shortcut approach. The testing

findings validate their assertion that the stego picture is

visually indistinguishable from the original image and

demonstrate the efficacy of their technique from a security

perspective.[1]

L. Negi et al. (2021) The cell phone is quickly becoming one

of the most widely used forms of communication today.

Users attach a high degree of importance to the data they post

on this platform. Therefore, protecting the message from

eavesdroppers is crucial. This article proposes Steg!, a

cryptographic steganographic security mechanism for

Android. In this case, Advanced Encryption Standard (AES)

is used as the cryptographic method while Least Significant

Bit is employed as the steganographic technique. This dual

method of encrypting the message and concealing it inside

the picture raises the bar for keeping sensitive data safe from

prying eyes. The program allows the user to conceal and

reveal text superimposed on a picture. It has been shown that

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m500

the aforementioned method is more effective and secure than

systems that just use cryptography and steganography.[2]

 (N. M. Abdali et al., 2020) This study provides a method for

identifying spatial domain picture tampering such as image

steganography, which is challenging to achieve due to the

lack of a database of original images necessary for the

classification process. The system works by first applying a

high-pass filter with a threshold, and then deriving the auto-

correlation function of the picture histogram. Without using

the original picture, this method may determine if an image is

a cover image or a stego image. The outcomes have shown

that this method works. They believe that their findings,

which have so far only been applied to least-significant-bit

(LSB) steganography, may be generalized to other forms of

image compression as well.[3]

(F. A. Rafrastara et al., 2019) Research into steganography,

one type of data concealment, is constantly directed at

enhancing picture quality, message payload, and security.

One approach that may be utilized to improve the

steganography's quality is the Inverted Least Significant Bit

(LSB) method. This research suggests using an inverted LSB

method with certain tweaks. The prior research used a two-

bit LSB pattern on the second and third LSB when using the

inverted LSB technique. Whether or whether the inverted

LSB operation is carried out is determined by calculating the

bit changes in each calculation pattern. The LSB three-bit

pattern, where the pattern is derived from the second, third,

and fourth bits of LSB, is advocated for usage in this study.

The goal was to reduce the number of LSB swaps in the

cover's individual pixels. It has been shown via testing that

the inverted LSB approach using three LSB patterns

outperforms the two-bit LSB pattern. The quality of the stego

picture improved for eight of the 10 evaluated cover photos.

The suggested LSB inverted approach is used in conjunction

with other message encryption techniques based on chaotic

maps.[5]

III. EXISTING SYSTEM

 The LSB (Least Significant Bit) algorithm was often

used to conceal messages inside a picture by swapping out

the image's least significant bits for the secret information.

Our secret message may be inserted into an image by altering

its first rightmost bit, which also makes the image

undetectable. However, if our message is too huge, it will

begin altering the second rightmost bit, and so on, and a third

party will be able to detect the changes.

Steganography makes use of another technique, DCT

(Discrete Cosine Transformation), which divides the picture

into 88 blocks of pixels. Blocks are DCT-ed in a left-to-right,

bottom-to-top fashion. While the secret message is contained

in the DCT coefficients and each block is compressed using a

quantization table to scale the coefficients, the amount of

information that can be hidden using this method decreases

as the size of the secret message increases.

 Also, since both these methods have a generalized

clear view of how they work, their potential has reduced to

be used out in the open for secret sharing and the reliance

upon cryptography has become the facto standard for years.

IV. PROPOSED SYSTEM

 Instead of hiding the message in the image itself we

will outsource the secret information in a secure server

known as open-stego server that can be used by anyone. This

server consists of mappings of the secret text to the image

which is created using a technique called 2-Bit RGBinary

mapping. This mapping can only be downloaded by the

legitimate receiver from the open-stego server by using a

unique token given by the server at the time of the map file

upload and the secret message can only be retrieved from the

same image which acts as the key. Following are the

advantages of the proposed system:

 • The information is not present in the image which

makes it only as a reference for retrieval and not the source

of secrecy.

 • The mapfile is stored in a secure server and can only

be downloaded by the legitimate receiver who has the token.

Also, there is a time interval for the mapfile to expire and the

information is wiped off from the server to ensure that when

physical tampering of the server if done it will ensure that the

data will not be present.

 • There will be no footprint or residue of secret

message in the image which opens the possibility to make

use of public domain images as this was a common problem

between all the previous techniques of steganography where

a suspected image when used against a scanning tool that

when looked for matches with public domain

V. ARCHITECTURE DIAGRAM

Figure 5.1 Architecture Diagram

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m501

VI. SYSTEM WORKING

• The sender starts by creating the mapfile filled with secret
message with the image using the 2Bit RGBinary algorithm
and upload the rgbinary map file to the open-stego server
resulting in receival of a token for receiving it later.

• Now using any social network platforms like Facebook,
Instagram, Pinterest the image can be uploaded along with the
token identifier can be shared using any other IM platforms.

• Next on the receiving side the image can be downloaded
along with the token that is being shared by the sender. This
token can be used to download the specific mapfile from the
open-stego server later using them with a 2Bit extraction logic
to retrieve the secret message.

There are 2 modules:

A) 2-Bit RBGBinary Mapping

B) Open-Stego Server

A. 2-Bit RBGBinary Mapping

The full form of 2Bit RGBinary is 2Bit Red, Green, Blue
Binary Mapping. The name proposed exactly defines what the
algorithm does. Given an image as an input to this algorithm
with a dimension of (mxn), it first creates a dictionary filling
with an exhaustive index of all 2 Bit combinations (00, 01, 10,
11) present within the pixels (r, g, b) of the image. The
runtime of this specific algorithm depends on the number of
pixels in the image which makes the sender to decide whether
an image with high/low resolution is to be selected for the
stego process. Now let us name this exhaustive index
dictionary as D. Next using D, the actual mapping of the
secret message to the image pixels (in binary form) starts
happening as shown in the following image:

Figure 6.A.1 2Bit RGB Binary Illustration

The secret text to be mapped is given as ‘pwd123’. We see a
bunch of zero filled binary values before each secret character
but limited to 8 bits. The reason is that since we will be
mapping these messages to the image with maximum of 2 bits
each and if they are lesser than 8 bits, there will be intricacies
within the algorithm to retrieve the secret message. Now the
mapped output as shown in the diagram is generalized as
follows:

<pixel_index>:<colorspace>:<colorspace_bit_index>

• pixel_index: This value represents the nth pixel in the image
i.e., if the image dimension is mxn (let mxn = k) the
arrangement of these pixels will be structured in a 1-
dimensional array making the index starting from 0 to k.

• colorspace: This represents whether the hidden bit is present
in the red (r) or green (g) or blue (b) colorspace of the image.

• colorspace_bit_index: This represents within the given
colorspace, at what index the secret data starts at. As
mentioned already the 8 Bit limit, the value of this specific
field will only be 0 or 2 or 4 or 6.

Now the output specific for the first letter in the secret
message ‘p’ and its binary equivalent is 01110000. We
assume that the image has only one pixel for this illustration
purpose, and the pixel_index is n. Then we observe the first 2
bits of the secret text i.e., 01 in ‘p’. Next, we search for the
occurrence of 01 in the image’s binary. In this case it is
present in the red colorspace starting at index 4 (assuming
index starting at 0). So finally, we can now create the map for
the first 2 bits as follows:

• pixel_index = n

• colorspace = r

• colorspace_bit_index = 4

The mapfile will have the data ‘n:r:4’, and this process will
be repeated for all the secret message characters.
Computationally, this mapping will be created proactively
creating the dictionary D that consists of the exhaustive 2Bit
indices. Also, note that when selecting an index from
dictionary D, it will be chosen randomly just to avoid making
the mapping look something sequential, which might result in
brute forcing all the combinations.

Now on the receiving side, using the mapfile along with the
image given as an input to the 2Bit extraction logic, the
reverse process will be carried out i.e., using the output as
shown previously ‘n:r:4’ the algorithm searches for the nth
pixel_index in the red colorspace at the
colorspace_bit_index number 4 resulting in the value ‘01’ to
be retrieved and so on for the remaining hidden message.

B. Open Stego Server

A server dedicated to respond users with the 2-bit RGBinary
Map (2BRGB) file to the authorized user. There are 2
different roles for a user:

• Sender: Send a post request to the open-stego server
2BRGB mapping in plain text or even encrypted to the open-
stego server. The server responds with a unique token that
acts an identifier so that this could be sent to the receiver
using any IM platforms for further retrieval of the same
mapfile.

• Receiver: Using the unique token sent by the sender, the
2BRGB mapping can be downloaded by the receiver and
further retrieve the secret message from the mapfile using the
image.

The unique token is created in a way that it is universally
distinct and there’ll be no repetition of the same token for 2
different mapfile. We name it as a uuid or Universally Unique
Identifier. It relies on a combination of parts to ensure
uniqueness. UUIDs are built from a string of 128-bit numbers.
The ID is written using the letters A through F and the
numerals 0 through 9. The hexadecimal digits are organized
as 32 hexadecimal characters with four hyphens:
XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.
Eight, four, four, twelve characters are used for every hyphen.
Indicating the format and encoding in one to three bits, the N
position is the fourth and final segment of the binary code.[7]
Following image illustrates the structure of a UUID:

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m502

Figure 6.B.1 UUID Structure

Time-based UIDs, for instance, are composed of three distinct

parts denoted by hyphens: a low time, a medium time, and a

medium time and version. The node's MAC address is

represented by the numbers in the last section.

We'll be utilizing a node.js package named uuid to create the

open-stego server. It's a package for Node.js that creates

secure cryptographically-signed IDs without a lot of extra

code. The uuid npm package is recommended whenever a

unique identifier is required since it has no dependencies and

is relied on by more than 30,000 other packages. Thanks to its

compatibility with both commonJS and ECMAScript

Modules, it's an excellent option for use on several platforms.

The uuid npm package does more than just generate a unique

id; its API also includes utility methods for verifying the

integrity of unique identifiers.

There are five distinct implementations of uuid in its present

iteration, known as "variant 1." The structures of these

variants are different from one another. Various versions 1, 2,

3, 4, and 5 of uuids exist.

VII. IMPLEMENTATION

The client-side program (script used by the sender and the
receiver) uses the Pillow library for image processing and the
requests library to interact with the open stego server. Now,
following is the algorithm of 2 Bit Red Green Blue Binary
Mapping, and explanation of what each one of those
functions do and result of their Computational Time
Complexity Analysis.

Contains the cache of all indexes of 2 bit Paired binaries

from the given image

_2Bit_Dict = {11 :[], 00 : [], 01 :[], 10 :[]}

Output mapfile in the form of a dictionary (later
saved as a map file)
_2BRGBINMAP = []

Array of arrays of RGB values of the given image in

1 Dimension
pix_vals = []

2BRGBM specific dict & array for cached value
retrieval
cs = ['r','g','b']
cs_map = {'r':0, 'g':1, 'b':2}

To convert given string to binary
to_binary(string):
 for i in string:
 binary_string+=str(bin(ascii(i))[2:].0fill_
 as_prefix(8))
 return binary_string

To convert binary string to characters
to_string(binstring):
 for i in range(binstring[i:i+8], 2):
 string += character(binstring[i:i+8])
 return string

Find the 2Bit match with the secret text
find_2bit_matches(pix_vals):
 for pixel_index, pixel_i in enum(pix_vals):
 for i in range(len(pixel_i)):
 for j in range(0, len(pixel_i), 2):

_2Bit_Dict[pixel_i[j:j+2]].append(str(pixel_index:{
cs}:str(j))

Maps each 2-bit sequence to a randomly selected 2-bit

value from the _2Bit_Dict
map_string_to2bitdict(bin_secret_msg):
 for i in range(0, len(bin_secret_msg), 2):
 chosen =
 random_pick(_2Bit_Dict[bin_secret_msg
 [i:i+2]])
 _2BRGBINMAP.append(chosen)

Reversal algorithm of 2BRGB Mapping to extract
the secret with the mapfile and the image
secret_bit_extraction(_2BRGBINMAP, pix_vals):
 secret_bits = ""
 for i in range(len(_2BRGBINMAP)):
 pixel_index,cs,csbi=_2BRGBINMAP[i].s
 plit(":")
 secret_bits+=pix_vals[int(pixel_index)][c
 s_map[cs]][int(csbi):int(csbi)+2]
 return secret_bits

Following are the detailed explanations of what each function
does in 2Bit RGB Mapping Algorithm:

 to_binary(string): This function takes in a
string as an argument and returns its binary
representation. It achieves this by first iterating over
each character in the input string and finding its
corresponding ASCII value. It then converts each
ASCII value to its binary representation using the
bin() function and concatenates them all together to
form the final binary string. For example, the string
"hello" would be converted to the binary string
"0110100001"…

 to_string(binstring): This function takes in
a binary string as an argument and returns its string
representation. It achieves this by iterating over the
binary string in chunks of 8 bits, converting each
chunk to its corresponding ASCII value using the
int() function, and concatenating them all together to
form the final string. For example, the binary string

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m503

"0110100001"... would be converted to the string
"hello".

 find_2bit_matches(pix_vals): This
function takes in a list of pixel values as an argument
and populates a global dictionary _2Bit_Dict with
pixel indices that contain each possible 2-bit
combination. It achieves this by iterating over each
pixel in the input list and for each pixel, iterating
over its red, green, and blue color values (in that
order). It then divides each color value into non-
overlapping 2-bit chunks and calls the mapp()
function on each chunk to update the _2Bit_Dict
dictionary. The resulting _2Bit_Dict dictionary
contains four keys ("00", "01", "10", "11"), with each
key containing a list of pixel indices in the format
"<pixel_index>:<color>:<color_bit_index>",
where "<pixel_index>" is the index of the pixel in
pix_vals, "<color>" is either "r", "g", or "b"
depending on the color being examined, and
"<color_bit_index>" is the starting bit index of the
2-bit chunk being examined.

 mapp(pixel_index, cs, pj): This function
takes in a pixel index, a color string, and a 2-bit
chunk string as arguments and updates the global
_2Bit_Dict dictionary accordingly. It achieves this
by using the pixel index and color string to construct
a unique key in the dictionary and then appending
the key to the value list corresponding to the 2-bit
chunk string in the dictionary.

 map_string_to2btdct(bin_secret_msg):
This function takes the bin_secret_msg which is the
secret message that has been converted to binary
format and maps each 2-bit sequence to a randomly
selected 2-bit value from the _2Bit_Dict dictionary.
It does this by iterating over the bin_secret_msg in
steps of 2 (since each 2-bit sequence needs to be
mapped), and for each 2-bit sequence, it gets the
corresponding 2-bit value from _2Bit_Dict and adds
it to the _2BRGBINMAP list.

 secret_bit_extraction(_2BRGBINMAP,
pix_vals): This function takes in the
_2BRGBINMAP list which has the 2-bit values
mapped to the secret message and pix_vals which is
the list of RGB pixel values of the image. It then
extracts the secret message from the image by
iterating over each element of _2BRGBINMAP and
extracting the corresponding bits from the
appropriate pixel of the image. To do this, it first
splits the _2BRGBINMAP element into three parts -
pixel_index, cs and cs_bit_index - which correspond
to the index of the pixel in the pix_vals list, the color
channel of the pixel ('r', 'g' or 'b') and the starting bit
index of the 2-bit sequence in the color channel,
respectively. It then uses these values to extract the
2-bit sequence from the pixel's color channel and
appends it to the secret_bits string. Once all the
elements of _2BRGBINMAP have been processed,
the function returns the extracted secret message.

The Open Stego Server uses the Express.js library to handle
HTTP requests and Multer middleware for file handling.
Following are the dependencies for creating and running the
server:

 fs: This is a Node.js built-in module that
provides an API for interacting with the file system.
In this code, it is used to read the contents of a file.

 express: This is a popular Node.js web
application framework used for building web
applications and APIs. It provides a set of features

for handling HTTP requests, routing, middleware,
and more.

 uuid: This is a module used for generating
unique identifiers (UUIDs). It provides a method for
generating a random UUID version 4.

 multer: This is a piece of middleware
meant to manage file uploads through
multipart/form-data requests. It provides a way to
specify the destination directory and filename for
uploaded files.

In code, these modules are imported using require() function,
which is used to load and import external modules in Node.js.
Following is the implementation used for the Open Stego
Server and explanation of what each API endpoint does.

// end point to store requested incoming // map file
from sender
route.post("/sendmap", upload.single("map"), (req,
res) => {
 console.log(req.file)
 if (req.file) {
 res.status(200).json({
 token: req.file.filename.split(".")[0]
 })
 } else {
 res.status(400)
 }
})

// endpoint to get back the mapfile with a // token by the
receiver
route.post("/receivemap", (req, res) => {
 token = req.body.token
 try {
mapfile=
 fs.readFileSync(`./uploads/{token}.json`)
 mapfile = JSON.parse(mapfile)
 res.json(mapfile)
 } catch (err) {
console.log(err)
}})

Following are the detailed explanation of what each API
endpoint does in the Open Stego Server:

• /sendmap route expects a multipart/form-data request
with a file named map attached. When a file is received, the
server generates a unique identifier using the uuid library,
saves the file in the server's disk storage under a folder named
uploads(to be added manually on the server side), and returns
the token(identifier) in the response. The receiver can later use
this token to retrieve the mapfile.

• /receivemap route expects a POST request with a token
field in the request body. The server reads the file with the
name of the token from the uploads folder, parses it as a
JSON object, and returns it in the response to the legitimate
receiver.

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m504

VIII. RESULT

The program provides a menu-driven interface on the client-
side to map secret text to an image, upload the map to a
server, download the map from the server and extract the
secret text from an image using a downloaded map.

Following PoC shows the steps involved in the proposed
method:

Figure 8.1 Mapping Secret Message to Image

Figure 8.2 Image used for Mapping - autumn.png

Figure 8.3 Secret Message to map – secret.txt

Figure 8.4 Mapfile Contents (2BRGBINMAP.json)

Figure 8.5 Upload Mapfile to OSS & receive Token

Figure 8.6 Download Mapfile from OSS by receiver

Figure 8.7 Extract secret message from the Mapfile

Figure 8.8 Final Extracted Secret Text

IX. SCOPE FOR FUTURE DEVELOPMENT

The benefits and drawbacks of each innovation are never

completely lopsided. The needs of the project have been met

nearly entirely. For a particular plaintext, the encoding

produced by the 2BRGBM technique has a high file size,

which may be avoided by using any standard compression

algorithm, therefore there is room for additional requirements

and improvements in the mapfile generating process. Also, a

chain of stego images can be used to hide the message (in our

case, use images as multiple references to retrieve the secret

text)

http://www.jetir.org/

© 2023 JETIR April 2023, Volume 10, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2304C64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org m505

X. CONCLUSION

This proposed methodology for secretly sharing messages in

a covert manner can be achieved in an effective way if we try

to use self-created images and not an image from a public

domain. It still can be used but, if the token is not taken care

of and it is being seen by a third person, it becomes obvious

that it should be an identifier to retrieve the mapfile from the

OSS and further mapping can be done by them and could

retrieve the secret making this method useless. Also, when

using self-created images like a selfie or a landscape photo of

any kind, people around the internet will not mind it as no

suspicion takes place since someone does not upload a photo

from a public domain and place it in their social media

account. But excluding the intricacies mentioned so far, this

method extensively increases current standards of

confidentiality of secret message when shared in an open

platform since we use it only as a reference of the secret data

and not the source of secrecy.

XI. REFERENCES

[1] E. V. Sidi, I. Diop and K. Tall, "A New hybrid approach

of Data Hiding Using LSB Steganography and Caesar cipher

and RSA algorithm (S-ccr)," 2022 International Conference

on Computer Communication and Informatics (ICCCI),

Coimbatore, India, 2022, pp. 1-4, doi:

10.1109/ICCCI54379.2022.9740979.

[2] L. Negi and L. Negi, "Image Steganography Using Steg

with AES and LSB," 2021 IEEE 7th International

Conference on Computing, Engineering and Design

(ICCED), Sukabumi, Indonesia, 2021, pp. 1-6, doi:

10.1109/ICCED53389.2021.9664834.

[3] N. M. Abdali and Z. M. Hussain, "Reference-free

Detection of LSB Steganography Using Histogram

Analysis," 2020 30th International Telecommunication

Networks and Applications Conference (ITNAC),

Melbourne, VIC, Australia, 2020, pp. 1-7, doi:

10.1109/ITNAC50341.2020.9315037.

[4] M. Baziyad and M. S. Obaidat, "On the Importance of the

DCT Phase for Image Steganography Schemes," 2020 IEEE

5th International Conference on Computing Communication

and Automation (ICCCA), Greater Noida, India, 2020, pp.

791-795, doi: 10.1109/ICCCA49541.2020.9250849.

[5] F. A. Rafrastara, R. Prahasiwi, D. R. Ignatius Moses

Setiadi, E. H. Rachmawanto and C. A. Sari, "Image

Steganography using Inverted LSB based on 2nd, 3rd and 4th

LSB pattern," 2019 International Conference on Information

and Communications Technology (ICOIACT), Yogyakarta,

Indonesia, 2019, pp. 179-184, doi:

10.1109/ICOIACT46704.2019.8938503.

[6] Stanger, James. “The Ancient Practice of Steganography:

What Is It, How Is It Used and Why Do Cybersecurity Pros

Need to Understand It?” Default. CompTIA, December 19,

2022. https://www.comptia.org/blog/what-is-steganography.

[7] Gillis, Alexander S. “What Is UUID?” App Architecture.

TechTarget, August 31, 2021.

https://www.techtarget.com/searchapparchitecture/definition/

UUID-Universal-Unique-Identifier.

http://www.jetir.org/

